Electrons are not subject to the strong nuclear force that glues the protons neutrons together. This means that no attractive force would prevent electric repulsion to scatter a “electron nucleus”.
From a field theory perspective, the strong nuclear force is a SU(3) gauge interaction and the electron field transforms as a singlet under that SU(3)
Strong interaction is really designed as a baryonic thing, leptons have no color charge (which is another way to say that they transform as SU(3) singlets). Leptons do not interact with gluons.
Not at tree-level anyway. See for example this list of vertices.
At loop levels, it’s possible to imagine an electron decaying into neutrino+W, then W into two quarks who can then interact with gluons, but as it’s down a couple of orders in perturbation theory so probably much too weak to hold a nucleus together. Not an expert in particle physics so I do not know with certainty whether a couple-of-loops interaction can have a measurable effect.